INTRODUCTION

These Specialty care and interfacility transport guidelines / protocols are designed to be used in situations where patients are being transported from one healthcare facility to another, for continued or upgraded care. This document is an adjunct document to the current Prehospital Care Protocol and Treatment Guidelines, and that document outlines core scope of practice as well as current standard of care for out of hospital providers. Where indicated, treatment modalities described in either document may apply to a given patient situation, and knowledge of both documents contents is required.

Definitions
Prehospital Care Protocols and Treatment Guidelines are referenced as “PCP” (Prehospital Care Protocols) throughout this document. This document will be referenced as “IFTP” (Interfacility Transport Protocols) throughout this document.

Hyperlinks
This document is hyperlinked as a .PDF for rapid retrieval of information. The cover is linked to the Table of Contents and each entry is linked to the corresponding page. The header of each page is linked back to the Table of Contents.
INTRODUCTION

TRANSPORT CARE GENERAL GUIDELINES

1. Patient safety first! Do NOT transport patients who cannot be appropriately managed in an ambulance or with the level of care available. Summon appropriate resources as necessary. Much scrutiny will come from decisions made regarding these situations. Be sure decisions are truly made because you do not have capability to manage the patient.

2. Receive a report on patient condition from their healthcare provider before transporting the patient. Assure patient report if from a direct healthcare provider engaged in the patient’s care. Consult Physician in charge of patient if the patient is critical.

3. Plan for patient decompensation enroute. Put appropriate interventions or monitoring in play before transport.

4. Assure all pre-established vascular access is functioning prior to departure.

5. Assure knowledge of and assure function of all patient treatment devices and therapies before transport.

6. Develop a plan with sending Physician if patient has potential for decompensation enroute before departure of the sending facility.

7. Paramedics may manage up to three (3) patient care devices per patient per call. A patient care device is defined as any externally managed device that would cause detriment to the patient if not in place or discontinued. Each medication infusion line counts as a device when running anything other than crystalloids. If additional patient care devices are required, additional help is required to manage the patient and devices. A cardiac monitor / defibrillator is not counted as a patient care device unless electrical therapy is or could be required for the patient during transport. Example; a bradycardic patient may require pacing if decompensation occurs, a monitor would be counted against the 3 patient care devices rule. If defibrillation (cardioversion) or pacing pads are on the patient for any reason at time of pickup, the monitor / defibrillator will count as a managed device.

8. If a patient develops complications during transport, treat per appropriate PCP.

9. Cardiac monitors and continuous pulse oximetry are required on all patients with medications running or attached patient care devices as defined above.

10. EMS is required to leave a PCR at receiving facility during all intrafacility transports.

11. Communicate any changes in patient condition during transport with receiving facility to assure proper patient care is available at the receiving facility.

12. 2 sets of vital signs are required as a minimum, and every 10 minutes during transport as a minimum.

13. Vital signs at time of pickup and drop off must be recorded and notated as such.

14. Waveform capnography is required on all patients with advanced airways in place.

15. Waveform capnography is required on all patients with NPPV in place.

16. Reports must be called to the receiving facility if the destination is the ED.

17. Glucose values should be reevaluated prior to or during transport if patients have not eaten, have been made NPO, received large volumes of fluids, has an insulin pump, has received steroids throughout their course of treatment, is post OP, or has had their blood glucose managed as part of their course of treatment.

18. A complete assessment shall be conducted of the patient prior to transport.

19. Assure double the anticipated amount of medications including oxygen, are available for expected transport time.

20. Document interventions and medications given before transport by the receiving facility as such on the PCR.

21. Contact Medical Control as necessary during intrafacility transports as defined in this document.

22. Multiple protocols are likely to apply to every patient encounter.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL GUIDELINES</td>
<td>3</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>4</td>
</tr>
<tr>
<td>ADVANCED AIRWAY PATIENT</td>
<td>5</td>
</tr>
<tr>
<td>ARTERIAL CATHETERS</td>
<td>7</td>
</tr>
<tr>
<td>BLOOD PRODUCTS</td>
<td>8</td>
</tr>
<tr>
<td>BURN PATIENT</td>
<td>9</td>
</tr>
<tr>
<td>CHEST TUBE MANAGEMENT</td>
<td>10</td>
</tr>
<tr>
<td>DIALYSIS PATIENT</td>
<td>11</td>
</tr>
<tr>
<td>DRAIN TUBE MANAGEMENT</td>
<td>13</td>
</tr>
<tr>
<td>FOLEY CATHETER MANAGEMENT</td>
<td>14</td>
</tr>
<tr>
<td>HOSPICE PATIENT</td>
<td>15</td>
</tr>
<tr>
<td>INVASIVE PRESSURE MONITORING</td>
<td>16</td>
</tr>
<tr>
<td>MEDICATION MANAGEMENT</td>
<td>17</td>
</tr>
<tr>
<td>MEDICATION PORT ACCESS</td>
<td>18</td>
</tr>
<tr>
<td>MEDICAL CONTROL</td>
<td>19</td>
</tr>
<tr>
<td>OB PATIENT</td>
<td>20</td>
</tr>
<tr>
<td>PEDIATRIC / INFANT PATIENT</td>
<td>21</td>
</tr>
<tr>
<td>PINK SLIPPED PATIENT</td>
<td>22</td>
</tr>
<tr>
<td>RESTRAINDED PATIENT</td>
<td>23</td>
</tr>
<tr>
<td>SALINE / “HEP” LOCK</td>
<td>24</td>
</tr>
<tr>
<td>SEDATION / ANALGESIA</td>
<td>25</td>
</tr>
<tr>
<td>SPECALITY CARDIAC SUPPORT DEVICES - MECHANICAL</td>
<td>26</td>
</tr>
<tr>
<td>SPECALITY CARDIAC SUPPORT DEVICES - ELECTRICAL</td>
<td>27</td>
</tr>
<tr>
<td>SPECALITY RESPIRATORY DEVICES / GASES</td>
<td>28</td>
</tr>
<tr>
<td>STEMI / CARDIAC TRANSFER</td>
<td>29</td>
</tr>
<tr>
<td>STROKE TRANSFER</td>
<td>30</td>
</tr>
<tr>
<td>TRAUMA TRANSFER</td>
<td>31</td>
</tr>
<tr>
<td>TRACHEOSTOMY PATIENT</td>
<td>32</td>
</tr>
<tr>
<td>UNSTABLE AT TIME OF TRANSFER</td>
<td>33</td>
</tr>
<tr>
<td>UNSTABLE PATIENT DIVERSION</td>
<td>34</td>
</tr>
<tr>
<td>USE OF LIGHTS AND SIRENS</td>
<td>35</td>
</tr>
<tr>
<td>VENTILATOR MANAGEMENT – ASSIST / CONTROL ONLY DEVICE</td>
<td>36</td>
</tr>
<tr>
<td>VENTILATOR MANAGEMENT – MULTI-MODE DEVICE</td>
<td>37</td>
</tr>
<tr>
<td>INDWELLING VENOUS LINES</td>
<td>38</td>
</tr>
<tr>
<td>IV PUMP MANAGEMENT</td>
<td>39</td>
</tr>
<tr>
<td>IV START TECHNICIAN</td>
<td>40</td>
</tr>
</tbody>
</table>
ADVANCED AIRWAY PATIENT

Purpose:
Describes requirements and recommendations for transporting patients with advanced artificial airways.

Overview:
Patients with advanced airways are generally managed by positive pressure ventilation. Patients who are on mechanical ventilation at the sending facility should remain on mechanical ventilation during transport unless there is a CRISIS situation.

Associated Protocols / Guidelines:
Ventilator Management
If Patient is Tracheostomy patient, see Tracheostomy Patient Protocol / Guidelines in this document

Permissions:

<table>
<thead>
<tr>
<th>PARAMEDICS may transport patients with advanced artificial advanced airways in place</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED EMT’s may NOT transport patients with advanced artificial airways in the IFT setting</td>
</tr>
<tr>
<td>EMT’s may NOT transport patients with advanced artificial airways in the IFT setting except uncomplicated, non-ventilated tracheostomy patients</td>
</tr>
</tbody>
</table>

General Requirements:
- Determine type of airway, and its location. Ex. Intratracheal, supraglottic, transtracheal.
- Assure device is properly positioned by auscultation, examination, and capnography.
- Wave form capnography is required for every advanced airway transport.
- Pulse oximetery is required for every advanced airway transport.
- Assure proper cuff seal on device by tactile inspection of the pilot balloon.
- Assure adequate tube restraint for transport, replace as necessary. Tape and twill are not appropriate for the rigors of out-of-hospital transport. Use commercial tube securing devices with a bite block.
- Document tube type, depth, size placement indicators prior to departure. Document with capnography strip attached to PCR.
- Document tube type, depth, size placement indicators during transport. Document with capnography strip attached to PCR.
- Document tube type, depth, size placement indicators once patient left in receiving facilities care. Document with capnography strip attached to PCR.
- Determine last sedation / analgesia regiment (if applicable) and understand how long given agents are expected to last and correlate with anticipated transport time. Be prepared to continue sedation / analgesia.
- Determine the need for sedation / analgesia during transport. Treat per Sedation / Analgesia IFTP.
- Calculate oxygen requirements for transports and assure adequate supply.
- If an established airway fails, treat per appropriate PCP.
• Suction must be available during transport and the movement of the patient to the receiving location.
• Continuous cardiac monitoring is required during intrafacility transport of patients.

Recommendations:
• C-Collars placement may be considered on patients with advanced artificial airways to prevent migration during transport.

Key points:
• Pulse oximetry is an indicator of oxygenation, not ventilation. Do not rely on pulse oximetry to verify proper airway placement.
• Capnography is an indicator of ventilation. A waveform indicates proper airway placement. The capnography number is the sum of metabolism, perfusion, and ventilation. Abnormalities in the number should be addressed by correcting metabolic, perfusion, or ventilation dysfunction. Identify and correct metabolic dysfunction (temperature, glucose, and oxygenation) first, perfusion second, ventilation concerns last.
ARTERIAL CATHETERS

Purpose:
To describe when it is appropriate to transport patients with arterial lines.

Overview:
Arterial access is sometimes utilized for pressure monitoring and interventional access for specialty procedures in hospital. Patients that have arterial lines shall go via Critical Care Transport.

Permissions:

| PARAMEDICS may NOT transport patients with arterial catheters in place |
| ADVANCED EMT may NOT transport patients with arterial catheters in place |
| EMT may NOT transport patients with arterial catheters in place |
Purpose: To describe when it is appropriate to continue blood products established by the sending facility.

Overview: There is no substitute for blood. Patient care often requires blood or blood products to yield optimal outcomes.

Permissions:
- PARAMEDICS are permitted to transport already established blood or blood products. Special training and competency required.
- ADVANCED EMT’s are NOT permitted to transport patients with blood products
- EMT’s are NOT permitted to transport patients with blood products.

General Requirements:
- Paramedics transporting blood products must have undergone testing consistent with a medical director approved competency and refreshed yearly.
- Paramedics transporting blood products must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- The blood or blood products must be initialized by the sending facility and have been infusing for 10 minutes before transport.
- Paramedics may not change blood or blood product bags / containers enroute
- If being infused with an IV pump at the sending facility and the tubing is incompatible with transport IV pumps, the sending IV pump must be taken, or the infusion must be run in via gravity after consultation with the sending Physician.
- Special tubing must sometimes be utilized for administration. Use only administration devices provided by the sending facility or approved tubing.
- If a transfusion reaction occurs during transport, discontinue the infusion and contact medical control. See IFTP Medical Control. Do not discard the blood product, it must be turned into the receiving facility.
- Type of blood product, route, volume, and completion must be documented on the PCR.
- EMS is not permitted to start or change blood products. If there is a need for multiple units of blood, they must be prepared and initiated by the sending facility prior to departure. Critical Care Transport should be considered in these cases.
- Use separate IV site for other medication administrations or infusions.

Key points:
- Transfusion reactions include fever, hypotension, pulmonary edema, and typical anaphylactic type reactions. Treat per anaphylaxis protocol.
Purpose:
Describe the requirements for transportation of burn patients

Overview:
Burn patients require evaluation and treatment at specialized burn centers for optimal outcomes. These patients will have large IV fluid requirements and frequently require aggressive analgesia.

Permissions:
- PARAMEDICS are permitted to transport burn patients including those with airway involvement
- ADVANCED EMT’s are permitted to transport burn patients who DO NOT have airway or near-airway burns as indicated by singed nasal hairs, soot, redness, or swelling
- EMT’s are ONLY permitted to transport adult burn patients with extremity burns less than 15% BSA of partial depth or less grade

General Requirements:
- Establish body surface area affected.
- Determine type of burn, and understand treatment provided prior to arrival.
- Establish depth of burns. Document on PCR along with dressings.
- Calculate or obtain fluid resuscitation requirements per the Parkland Burn Formula.
- Complete a detailed assessment of the airway, oropharynx, neck, and chest to determine potential for deterioration enroute.
- Secure or have secured any potentially involved airway PRIOR to transport.
- Feel and consider marking the cricothyroid membrane on all patients with head, neck, and chest involvement in case of outright upper airway failure.
- Capnography is required on all burn transports.
- Assure multiple vascular access points are established for the administration of fluid and/or analgesia.
- If a patient becomes hypotensive despite continued fluid administration, consider augmenting care with ResQGARD assuming patient does not have an advanced airway.
- Administer / continue pain management as required per the PCP Burn Protocol.
- Sleepy, obtunded, respiratory distress, hypotensive patients, or stridorous patients require Paramedic ALS transport.
- Treat stridor aggressively per PCP and be prepared to perform cricothyrotomy.
CHEST TUBE MANAGEMENT

Purpose:
To describe the process for management of chest tubes in transport.

Overview:
Many patients require chest tubes for relief of pressure or fluids from the thorax.

Permissions:
- PARAMEDICS are permitted to transport patients with chest tubes
- ADVANCED EMT’s are NOT permitted to transport patients with chest tubes
- EMT’s are NOT permitted to transport patients with chest tubes

General Requirements:
- Determine reason for chest tube; to relieve air, fluid, or both from the thorax.
- Determine location of chest tube(s).
- Assure that the tube(s) are securely affixed to the patient prior to transport. Secure additionally as required.
- Mark catheter / patient along somewhere along its length as a reference in case of migration.
- Determine what type of collection or venting process is in place (ex. one-way valve, or collection set).
- If collection set being utilized, verify water seal chamber is full to indicated line.
- Collections sets must be transported upright, and lower than the patients’ thorax.
- Determine if collection set is on suction and continue suction as necessary.
- Record volumes of collected fluids in collection chamber prior to transport and at destination.
- The Paramedic must have booted hemostats available to clamp a chest tube if the collection set or valve becomes disconnected.
- Listen to and document lung sounds before moving the patient and after each move.
- Assure adequate vascular access prior to transport.
- If migration of a chest tube occurs, secure in place and assess for signs of hemo/pneumothorax. Be prepared to perform needle chest decompression. Contact medical control, refer to the IFTP Medical Control.
- If complete dislodgement occurs, cover the ostomy with gauze. Monitor for signs for hemo/pneumothorax. Be prepared to perform needle chest decompression. Contact medical control, refer to the IFTP Medical Control.
- Paramedics transporting chest tubes must have undergone testing consistent with a medical director approved competency and refreshed yearly.
- Paramedics transporting chest tubes must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- If the patient has a drop-in blood pressure and / shortness of breath, evaluate for tension pneumothorax and perform needle chest decompression per the PCP.
DIALYSIS PATIENT

Purpose:
To describe the requirements and recommendations during the transport of dialysis patients.

Overview:
Dialysis patients are chronically ill patients, usually with multiple co-morbidities. These patients are high risk patients for numerous life threatening issues and require detailed assessment with every encounter.

Permissions:

<table>
<thead>
<tr>
<th>PARAMEDICS are permitted to transport dialysis patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED EMT’s are permitted to transport dialysis patients</td>
</tr>
<tr>
<td>EMT’s are permitted to transport dialysis patients to SNF’s, dialysis centers, and scheduled non-acute patients.</td>
</tr>
</tbody>
</table>

General Requirements:

- A minimum of 2 set of vital signs are required on EVERY transport, including Spo2.
- A glucose is required to be assessed during transport if the patient has any alteration in normal mental status, (or unknown mental status), fever, refusing or unable to eat meals, describes malaise, or appears diaphoretic.
- Lung sounds must be obtained, and results recorded.
- Actively bleeding patients cannot be returned to SNF’s.
- IV access is not permitted in extremities where active AV fistulas are present below the active fistula.
- IV access in extremities with old / inactive fistulas should be avoided.
- AV fistulas access established by dialysis center may be left in place during transport for use by EMS if the patient is or has potential to become unstable enroute. The extremity must be kept straight if fistula access is left in place.
- Patients must have their access site visible during transport for ongoing assessment of bleeding.
- Cardiac monitoring, continuous pulse oximetry and 12 lead EKG’s are required on all dialysis patients being transported to the ED or for hospital admission.
- Attempt to ascertain the potassium level on hospital to hospital transfers prior to departure from sending and be prepared to treat hyperkalemia per the Dialysis / Renal Patient PCP if complications arise
- No food or drink shall be provided during EMS care to a dialysis patient.

Recommendations:

- Have a high index of suspicion for decompensation with all dialysis patients.
- Glucose evaluation on most dialysis patients, especially post dialysis, may be warranted.

Key points:

- These patients have complex medical problems, and they are seen with frequency. They are not “routine”.

University Hospitals - Specialty Care and Interfacility Transport Protocols / Guidelines | 11
• Patients come into dialysis hypervolemic and leave hypovolemic.
• All electrolytes are elevated pre-dialysis, and reduced post dialysis.
• Many therapeutic medications are removed during dialysis.
• Patients with indwelling catheters are incredibly high risk for introduction of infectious pathogens. They should be considered at least bacteremic and assessed for sepsis during beach encounter.
• AV grafts or shunts may bleed after removal of dialysis needles post dialysis. Do not package patient such as bleeding would not be identified during transport.
• If AV graft is ripped or torn, a tourniquet may be necessary to stop bleeding. Divert immediately to the closest ED.
• Generally bleeding from an AV graft from removal of dialysis needles can be controlled with direct pressure. Divert to and ED if bleeding does not subside with direct pressure.
• Have all access needles removed from dialysis patients before departing dialysis centers.
DRAIN SYSTEM / TUBE MANAGEMENT

Purpose:
Describe general management of various types drain tubes a patient may have.

Overview:
A patient may have various type of drain tubes inserted for any number of reasons.

Permissions:

- **PARAMEDICS** may transport all drain tubes
- **ADVANCED EMT’s** may transport drain tubes that do not drain the chest
- **EMT’s** may transport drain tubes that do not drain the chest

General Requirements:
- Ascertain what the tube is draining, and why it was placed.
- Determine how the fluid is collected.
- Assure that the collection tube or system is secured to the patient prior to transport.
- Determine if there is any special orientation or power requirements for the collection device.
- Have a clamp available to occlude the drain tubing in the event the drain gets separated from the collection device. Clamp the patient side of any tube.
- If a drain tube gets pulled out inadvertently, cover the entry hole with sterile occlusive dressing and notify receiving facility.
FOLEY CATHETER MANAGEMENT

Purpose:
To describe the management of foley catheters.

Overview:
Many patients have foley catheters and drain bags.

Permissions:
- **PARAMEDICS** may transport patients with foley catheters and drain bags
- **ADVANCED EMT’s** may transport patients with foley catheters and drain bags
- **EMT’s** may transport patients with foley catheters and drain bags

General Requirements:
- Empty foley drain bags before transport and advise facility of volume.
- Record volume of output during transport.
- Keep the collection bag at a level lower than the patients’ bladder.
- If a foley is inadvertently pulled out, treat any bleeding and advise receiving facility. Do not attempt reinsertion.
- Document color and clarity of urine collected
HOSPICE PATIENT

Purpose:
To describe the management of hospice patients

Overview:
EMS is frequently requested to transport terminal or hospice patients.

Permissions:
- **PARAMEDICS** may transport hospice patients
- **ADVANCED EMT’s** may transport hospice patients
- **EMT’s** may transport hospice patients

General Requirements:
- Have contact information for the hospice service prior to transport
- Have a current DNR or confirmation that you are approved to not resuscitate the patient in the event of death during transport from Medical Control.
- PRIOR TO TRANSPORT - Have a plan, confirmed with the hospice providers, on EMS actions if patients dies during transport.
INVASIVE PRESSURE MONITORING

Purpose:
This describes that non-arterial invasive line monitoring is a critical care function but defines transportation with hardware in place, without monitoring would be acceptable.

Overview:
Patients may have various invasive pressure monitors in place for numerous conditions. These could include but are not limited to CVP or ICP.

Permissions:
- PARAMEDICS are NOT permitted to monitor invasive lines, but may transport the patient with invasive lines in place assuming they do NOT need monitored and are not arterial
- ADVANCED EMT’s are NOT permitted to monitor invasive lines
- EMT’s are NOT permitted to monitor invasive lines

General Requirements:
- Determine the placement of the catheter, if venous, arterial, or otherwise.
- If placement is arterial, refer to IFTP Arterial Catheters.
- Determine if the patient can be transported without that pressure being transduced.
- If pressure transduction is required and patient care decisions made based on that information, a Critical Care Team must be summoned.
MEDICATION MANAGEMENT

Purpose:
To define the continuation of hospital established medications during transport.

Overview:
Medications are required for numerous reasons for patients. Proper maintenance of these medications during transport are necessary for optimal patient outcomes.

Permissions:
PARAMEDICS are permitted to manage approved medications on a fixed rate for transport.
ADVANCED EMT’s are NOT permitted to manage medications other than normal saline, lactated ringers, or dextrose preparations without a pump.
EMT’s are NOT permitted to manage medications during transport

General Requirements:
- Paramedics may continue approved medications on a fixed rate established by the sending hospital.
- A Paramedic may establish titration criteria with the sending Physician on a per case basis but may not titrate without orders.
- A Paramedic may communicate with Medical Control (Reference IFTP, Medical Control) regarding medication changes enroute.
- Establish that the patient is stable on a selected medication before transport. If patient is not stable, consult sending Physician to stabilize prior to transport. Refer to IFTP; Unstable at time of transport.
- If a patient becomes unstable due to a medication during transport, discontinue the medication, treat by appropriate PCP Protocol and contact Medical Control (refer to IFTP Medical Control protocol).
- All drip medications must be on an IV pump except normal saline, lactated ringers, or dextrose products less than or equal to a 10% concentration.
- Glass bottles require vented IV tubing.
- Nitro requires special IV tubing.
- UNDERSTAND THE DIFFERENCE BETWEEN TPA AND TPN.
- IF TPA RUNNING ON PATIENT – SEE STROKE TRANSFER
- Paramedics transporting medications must have undergone testing consistent with a medical director approved competency and refreshed yearly.
- Paramedics transporting medications must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- Document rate, concentration, route, and whom initiated.
- If patient is on a PCA pump and requires augmentation of sedation or analgesia provided by the PCA, contact Medical Control. Patients with PCA pumps must be transported by a Paramedic.
- Chemotherapeutic agents cannot be transported including but not limited to irradiated platelets.
MEDICATION PORT ACCESS

Purpose:
To define the use and access of subcutaneous medication ports.

Overview:
Medications ports are placed for numerous reasons in patients with poor vascular access or requiring frequent vascular access.

Permissions:

- PARAMEDICS are permitted to manage already accessed med ports. Paramedics with special training may access med ports
- ADVANCED EMT’s are NOT permitted to access / manage medications ports
- EMT’s are NOT permitted to access / manage medications ports

General Requirements:
- Paramedics accessing med ports must have undergone testing consistent with a medical director approved competency.
- Paramedics accessing med ports must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- Paramedics accessing med ports must have special Huber needles for accessing med ports.
- Paramedics may utilize prior accessed med ports consistent with requirement outlined in the indwelling venous lines IFTP.
MEDICAL CONTROL

Purpose:
To define Medical Control for interfacility transport patients.

Overview:
Multiple Physicians may be involved in the care of a patient, whom to call in which order and when is important.

Permissions:
- PARAMEDICS may contact Medical Direction as required
- ADVANCED EMT’s may contact Medical Direction as required
- EMT’s may contact Medical Direction as required

General Requirements:
- The sending Physician is responsible for the patient during transport.
- As required, get contact information for the sending Physician prior to transport.
- A provider should consult the sending Physician for orders specific to the transport as long as the orders are within the providers’ scope of practice and the provider has appropriate resources to carry the orders out safely. Orders from any Physician must be within the scope of practice of transporting EMS providers.
- If the patient condition changes during transport, the sending Physician should attempt to be contacted first.
- If the sending Physician is unavailable, and the accepting Physician is known and available, patient specific orders should be obtained from them.
- In the event the sending or receiving Physician is not available, Prehospital Medical Control may be contacted.
- Document all Medical Control contact and name of Doctor.
OB PATIENT

Purpose:
Define the parameters for successful OB patient transport.

Overview:
OB patient transports require careful assessment and planning for optimal outcome.

Permissions:
- PARAMEDICS can transport OB patients including OB emergencies.
- ADVANCED EMT’s can transport OB patients EXCLUDING OB emergencies.
- EMT’s can transport OB patients EXCLUDING OB emergencies.

General Requirements:
- Patients experiencing contractions less than 5 min apart and MORE THAN 6 cm of dilation should be delivered before transport unless sending facility wishes to send additional trained staff.
- Patients experiencing OB emergencies should have benefit of transport carefully weighed with ability to treat and manage said emergency in an ambulance. Discuss situation with sending Physician and / or medical control as necessary.
- Patients receiving magnesium IV should have deep tendon reflexes (DTR’s) monitored every 10 minutes throughout transport. Calcium must be available as an antidote.
- Collect and understand patient OB history before transport. Obtain and record Para / Gravida status, prenatal care, pre-eclampsia, and previous OB history / complications.
- C-Sections may not be performed by EMS.
- Fetal monitoring is not performed by EMS. Other healthcare providers with fetal monitoring equipment and training may be transported with the patient as the situation dictates.
- If patient is pre-eclamptic and progresses to eclampsia enroute, reference PCP for OB emergencies.
- Specialty Health Care provides may be transported with the patient in crisis situations to assist with in transport emergencies.

Key points:
- DTR’s are checked by using impulses from a reflex hammer to stretch the muscle and tendon. The limbs should be in a relaxed and symmetric position, since these factors can influence reflex amplitude. It is important to compare each reflex immediately with its contralateral counterpart so that any asymmetries can be detected.
Purpose: Describe the needs and safe treatment and transport of the pediatric / neonatal patient

Overview: Child and Infant transports require specialized equipment and training. Good history, assessment, and planning yield optimal outcomes

Permissions:
- PARAMEDICS may transport Pediatric / Infant patients requiring ALS care enroute
- ADVANCED EMT’s may transport Pediatric / Infant patients requiring non medicated IV fluids enroute
- EMT’s may transport stable Pediatric / Infant patients requiring BLS care

General Requirements:
- Pediatric / Infant patients require weight appropriate restraint devices. Refer to and follow the manufacturers recommendations for patient weight.
- Cot mounted restraint devices are NOT to be utilized anywhere but on ambulance cots.
- Caregiver supplied car seats may be utilized if instructions for proper securement are available and legible for that device and is otherwise in good working order.
- Weight based reference material for resuscitation must be available.
- Parents / caregivers are never permitted to hold the patient while sitting on the cot.
- Paramedics may NOT transport patients under the age of 16 years old on ventilators.
- EMS may transport patients under 16 years of age if the patient is chronically ventilated and is on their native vent and there is a family or caregiver trained to manage said device.

Recommendations:
- Patients with airway / breathing issues should be placed in flexible cot mounted restraint devices rather than traditional car seats for ease of positioning and intervention if required during transport.
- Assure venous access if needed is in place and functional prior to transport

Key points:
- Additional non-patient children or family members are not to be transported in the ambulance.
- One caregiver, translator, or family member may accompany the patient in the ambulance at the discretion of the treating crew.
Purpose:
Describe the situations and care of patients who are pink slipped.

Overview:
Safety of the crew is priority. Summon law enforcement as necessary to assure crew safety.

Permissions:
- PARAMEDICS may transport pink slipped patients
- ADVANCED EMT’s may transport pink slipped patients
- EMT’s may transport pink slipped patients

General Requirements:
- Summon appropriate help to assure crew and patient safety.
- If patient is restrained follow procedure for restraint in the PCP if applicable.
- The transporting crew must have a copy of the pink slip (application for emergency admission) prior to transport.
- Patient must be searched by EMS prior to transport for crew and patient safety.
- Consider elopement risk and plan accordingly. Consider sedation and restraint options.
- Eloped patients from EMS care are to be followed at safe distance and police summoned for recovery.
- Belongings must be kept separate from the patient.
- Secure any items in the truck that may be used as a weapon against the crew.
- The treating crew must have a copy of the Pink Slip order.

Recommendations:
- Lights and sirens are not to be used unless the patient experiences a medical emergency aside from the reason for restraint or crew safety is in immediate jeopardy.
- Remove shoes, pants, and transport in hospital gown to discourage elopement.

Key points:
- Same sex providers should be utilized whenever possible.
RESTRAINED PATIENT

Purpose:
Describe the care of patients transported in restraints

Overview:
Safety of the crew is priority. Summon law enforcement as necessary to assure crew safety.

Permissions:
- PARAMEDICS may transport retrained patients
- ADVANCED EMT’s may transport restrained patients
- EMT’s may transport restrained patients

General Requirements:
- Patients may NOT be transported in KEY locked leather restraints unless special critical circumstances exist. Keyless leather restraints require all 4 restraints to be applied to function correctly.
- Tie on soft restraints are permitted in any quantity.
- Restrain patient per PCP restraint procedure.
- MSP’s must be checked after application and every 10 mins thereafter and documented on the PCR.
- Patients may not be transported face down.
- Place a HEPA mask or oxygen mask with oxygen supplied over patient if they are spitting. Hospital or law enforcement supplied spit hoods are permitted as long as they are purpose made for that application, do not obstruct the airway, and can be removed quickly in the event of an emergency.
- Use verbal de-escalation techniques during restraint and transport.
- Establish last sedation and chemical restraint from sending facility (if given) and document. Be prepared to supplement or redose as necessary per PCP.
- Eloped patients from EMS care are to be followed at safe distance and police summoned for recovery.
- Restrained or handcuffed prisoners require law enforcement to accompany the patient in the ambulance.
- If fever, tachycardia, muscle rigidity and AMS accompany a patient who has received any tranquilizer or antipsychotic drugs is indicative of Neuroleptic Malignant Syndrome and is an emergency. Begin cooling and divert to an ED immediately.
- No restraint may be made across the patient’s chest. This excludes seat belts required for safe transport in a moving vehicle. Cot seat belts shall not be so tight as to provide impairment to breathing.
- Nothing is to be placed over the patient head.

Recommendations:
- Lights and sirens are not to be used unless the patient experiences a medical emergency aside from the reason for restraint or crew safety is in immediate jeopardy.
SALINE / “HEP” LOCK

Purpose:
Describe whom can transport Saline Locks

Overview:
Saline locks may be present in many patients requiring transport.

Permissions:
- PARAMEDICS are permitted to take patients with Saline Locks
- ADVANCED EMT’s are permitted to transport patients with saline locks
- EMT’s are permitted to transport patients with saline locks assuming no other ALS intervention are required enroute and there are no fluids attached or flowing through the lock.

General Requirements:
- If able by scope of practice, locks should be flushed prior to transport to assure patency.
- EMTs are permitted to transport saline locks with nothing attached given patient destination is a non-acute care destination. See above permissions.
- Advanced EMT’s are permitted to transport saline locks with saline, ringers, or dextrose preparations attached.
- IV access with a lock attached must be documented as such on the PCR.
- Document location and gauge of IV on PCR.
- If the lock gets pulled out, apply direct pressure to the site. Inspect catheter to assure all has come out. Transport catheter with patient if unsure.
Purpose:
Describe the situations where additional sedation or analgesia are applicable during transport.

Overview:
Many patients requiring transport need or have undergone sedation or analgesia for various reasons.

Permissions:

PARAMEDICS	May provide additional analgesia or sedation as required
ADVANCED EMT’s	may provide additional analgesia as required
EMT’s	may NOT provide additional analgesia or sedation

General Requirements:
- Capnography must be utilized when redosing any patient with analgesics or sedatives.
- Use like agents as given by the sending facility wherever possible, unless not indicated.
- Confer with sending Physician or medical control prior to transport for their preferred agents.
- Begin with analgesics first for patient comfort and graduate to sedation unless otherwise indicated or instructed.
- Patients on drip analgesics or sedatives should be augmented with small incremental doses of EMS supplied medications as needed unless there is a pre-approved titration order on a per case basis.
- Patients on drip analgesics and sedatives shall have documented the beginning volume, ending volume, total amount given, and what was left at receiving facility. Document nurse names at both sending and receiving.
- Patients on any type of sedation or analgesic regiment who suffer respiratory or hemodynamic compromise as a result of said regiment shall have the treatment stopped (if able) and resuscitated per PCP.
- Rule out other medical issues and treat underlying cause before adding additional analgesia or sedation.
- Advanced EMT’s and Paramedics may provide supplemental pain management for patients experiencing symptoms of pain. Dosing is per PCP pain management protocol.
- If patient is on a PCA pump and requires augmentation of sedation or analgesia provided by the PCA, contact Medical Control.

Recommendations:
- Understand what agents were used and know when to expect them to begin wearing off. Establish last administration and dose.
SPECIALTY CARDIAC SUPPORT DEVICES - MECHANICAL

Purpose:
Describe the handling and permissions associated with the transport of patients requiring specialty cardiac support devices.

Overview:
Many types of devices are attached to patients for cardiac support depending on need and disease pattern.

Permissions:

| PARAMEDICS may transport patients with cardiac support devices as required |
| ADVANCED EMT’s may transport patients with implanted cardiac support devices not requiring intervention ex. Hospital discharge or doctor’s appointment. |
| EMT’s may transport patients with implanted cardiac support devices not requiring intervention ex. Hospital discharge or doctor’s appointment. |

General Requirements:

- Surgically implanted devices contained within the patient body and run by external controllers may be transported by EMS.
- Capnography and heart rhythm must be monitored in addition to continuous basic vital signs for all patients having trouble as a result of / concurrent with use of the device.
- Care givers and patients are generally extensively trained in the operation and emergency procedures associated with implanted devices that the patient lives with. Keep persons knowledgeable in the operation of the device with the patient and use as a resource for management of the patient.
- Make sure destination is equipped and ready to receive patients with specialty cardiac devices.
- Patients requiring temporary catheter-based intervention for cardiac support must be transported by a Critical Care Transport team. Ex. ECMO, Impella, Balloon Pump (IABP).
- Take instructions, extra batteries, chargers, cords, and trained caregivers with the patient.
- Most patients sent home with cardiac support devices have are followed by specialty teams. These teams usually have an on-call number. Determine this number and contact the on-call team if there are complications from the device.
- Patients should be transported to specialty care services, determine where the patient had said support device placed and arrange transport to that facility.
- Be prepared for decompensation and have a diversion / treatment plan if the patient becomes hypotensive or arrests.
SPECIALTY CARDIAC SUPPORT DEVICES – ELECTRICAL

Purpose:
Describe the handling and permissions associated with the transport of patients requiring specialty cardiac support devices.

Overview:
Many types of devices are attached to patients for cardiac support depending on need and disease pattern.

Permissions:
- PARAMEDICS May transport electrical cardiac support devices such as internal pacer, lifevests, and external pacers.
- ADVANCED EMT’s may NOT transport patients with electrical cardiac support devices
- EMT’s may NOT transport patients with electrical cardiac support devices

General Requirements:
- Identify type of device and underlying disease process requiring its use.
- Assure all documentation, batteries, charger cords are transported with the patient.
- Continuous pulse oximetry is required during transport of patients with electrical cardiac support devices.
- Cardiac monitoring is required during transport of patients with electrical cardiac support devices.
- Be prepared for decompensation and have a diversion / treatment plan if the patient becomes hypotensive or arrests.
- Sedation analgesia may be necessary during transport, dosing per the PCP.
SPECIALTY RESPIRATORY DEVICES / GASES

Purpose:
To describe the management of patients with specialty respiratory equipment or gases.

Overview:
Patients are frequently transported between facilities on respiratory equipment not typically utilized out of hospital. This may include specific devices or gas blends.

Permissions:
- **PARAMEDICS** may transport specialty oxygen delivery devices, but not specialty gases.
- **ADVANCED EMT’s** may transport specialty oxygen delivery devices assuming patient is spontaneously breathing, but not specialty gases.
- **EMT’s** may transport specialty oxygen delivery devices assuming patient is spontaneously breathing, but not specialty gases.

General Requirements – Specialty Devices:

- Engage respiratory practitioner responsible for set-up and maintenance of the device as soon as possible. Understand treatment goals and settings.
- Determine oxygen consumption, calculate volume available, and factor in transport time with additional margin for weather and traffic to assure sufficient quantity available.
- Determine if device needs flowmeter regulated oxygen or direct 50psi connection to ambulance oxygen supply. Assure oxygen connector types fit ambulance and portable tanks.
- Establish baseline vital signs including pulse oximetry and capnography.
- Formulate a back-up plan if device fails.
- Determine if there are also electrical requirements needed for the device. Assess availability during transport.

General Requirements – Specialty Gases:

- Specialty gases are the realm of respiratory care or other pulmonary specialists.
- Specialty gases must be managed by experts in their delivery and action. EMS is not permitted to transport patients on specialty gases without a respiratory or pulmonary specialist accompanying.
- Patients requiring specialty gases should be transported by Critical Care Transport unless they are unavailable.
STEMI / CARDIAC TRANSFER

Purpose:
Define procedure and requirements for the transport of MI patients

Overview:
MI patients may be transported to hospitals for admission or interventional needs

Permissions:
- PARAMEDICS may transport STEMI / cardiac patients
- ADVANCED EMT’s may NOT transport STEMI / cardiac patients
- EMT’s may NOT transport STEMI / cardiac patients

General Requirements:
- Differentiate patients being transported for intervention from those going for higher care, assessment for intervention, or admission.
- Patients being transported for emergent intervention should be treated as an emergency. Lights and sirens are appropriate per agency emergency vehicle operation policy.
- Patients being transported for assessment for intervention or admission are treated as urgent, but not emergent.
- Cardiac monitors are required bedside to bedside
- Assure patient has vascular access prior to transporting
- Cardiac monitoring, automated blood pressure, and capnography are required during transport.
- Vital signs must be evaluated a minimum every 10 minutes.
- Notify receiving facility of ETA enroute with acute MI patients going for intervention.
- Prepare for and expect decompensation enroute, have potentially needed items readily available.
- Precautionary placement of pacing / defib pads should be considered for transport.
Purpose:
Define procedure and requirements for the transport of acute stroke patients

Overview:
Stroke patients may be transported to hospitals for admission or interventional needs

Permissions:
- PARAMEDICS may transport acute stroke patients
- ADVANCED EMT’s may transport acute stroke patients NOT requiring medication administration during transport.
- EMT’s may transport non-acute stroke patients to rehab and SNF’s

General Requirements:
- Determine type of stroke and location prior to transport (ex. hemorrhagic, or ischemic)
- Obtain onset time from the sending facility
- Assure patient has vascular access prior to transporting
- If patient is having blood pressure controlled, understand and document target BP / MAP as discussed with the sending Physician.
- Determine if patient is being transported for intervention or just admission. Lights and siren use is permitted if there will be measurable time savings and the patient is going for urgent / emergent intervention. Patients being transported with no pending intervention shall be treated as non-emergent.
- Conduct a stroke assessment at patient contact and every 15 minutes (or as directed) during transport and document. MINIMUM REQUIRED DOCUMENTATION; Level of Consciousness, Orientation, Speech, and Absence / Presence of headache – Conduct as much of the MEND exam as possible with each reassessment interval.
- You must call receiving ED with your ETA, at least 10 minutes out.
- COPIES OF PCR and other documentation regarding vitals and condition MUST be left at receiving facility with the patient.
- Maintain medications enroute per the medication management IFTP

If Patient is receiving TPA
- Prior to transport from sending facility the patients’ blood pressure must be controlled <180 systolic and <105 diastolic and must have no complaints of headache, nausea, vomiting, orolingual angioedema, or worsening neurological symptoms.
- LABETALOL (TRANDATE) Or HYDRALIZINE (APRESOLINE) MUST be available for transport of ischemic stroke patients receiving TPA in case patients BP elevates out of required parameters.
- If patient develops headache, nausea, vomiting, or orolingual angioedema during transport STOP TPA. Notify receiving facility and manage BP if required.
- TPA is bolused by the sending facility prior to departure.
- TPA is NOT titrated enroute and is discontinued after 60 mins. Document total volume delivered, and total delivered during transport.
- If TPA is going to finish during transport, attach saline to the IV line to assure all volume in line is delivered, it is within the timeframe. Administration rate must remain the same.
- If compatible IV pump to ED pump is not available for an immediate pump only switch (tubing does not get changed), the ED pump must be borrowed and returned after the call.

STROKE TRANSFER

ONLY IF patient BP becomes greater than 180 systolic OR 105 diastolic during transport
LABETALOL (TRANDATE) 10mg IV over 2 min
Re-assess BP in 10 minutes – If still greater than 180 systolic OR 105 diastolic, repeat
LABETALOL (TRANDATE) 20mg IV over 2 min
Contact Receiving Facility with Update

IF LABETALOL (TRANDATE) UNAVAILALE
ONLY IF patient BP becomes greater than 180 systolic OR 105 diastolic during transport
HYDRALIZINE (APRESOLINE) 10mg IV over 2 min
Re-assess BP in 10 minutes – If still greater than 180 systolic OR 105 diastolic, repeat
HYDRALIZINE (APRESOLINE) 10mg IV over 2 min
Contact Receiving Facility with Update

a If patient bradycardic and hypertensive, use a NITROGLYMERIN (NITRO-STAT) to reduce BP while contacting Receiving Facility regarding the patient’s condition
Purpose:
Define procedure and requirements for the transport of acute trauma patients

Overview:
Trauma patient may need transport from non-traumas facilities to trauma facilities

Permissions:

| PARAMEDICS may transport trauma patients |
| ADVANCED EMT’s may transport trauma patients |
| EMT’s may NOT transport acute trauma patient that may require ALS intervention (Ex. Fluid bolus, needle decompression, etc.) |

General Requirements:
- Determine type of trauma prior to transport
- Obtain onset time from the sending facility
- Assure patient has vascular access prior to sending
- If patient is being fluid resuscitated, understand and document target BP / MAP as discussed with the sending Physician.
- Determine if patient is being transported for intervention or just admission. Lights and siren use are permitted if there will be measurable time savings and the patient is going for emergent intervention. Patients being transported to be assessed for interventions shall be treated as non-emergent.
- Prepare for and expect decompensation enroute, have potentially needed items readily available.
- Notify receiving facility of ETA enroute with acute stroke going for intervention.
- Patients who have had their c-spine cleared do not require re-immobilization prior to transport unless there is specific case specific reason to do so. C-collars should be left in place if present.
- Vital signs must be evaluated a minimum of every 10 minutes.
- Cardiac monitoring, automated blood pressure, and capnography are required during transport.
- Patients being transported to the Trauma Center ED or OR should be treated like a scene run.
- Patients being transported for trauma rehab or admission to the floor shall be non-emergent unless decompensation occurs enroute.
TRACHEOSTOMY PATIENT

Purpose:
Describe the care and treatment of patients who have existing tracheostomies.

Overview:
Patients may have existing tracheostomies in place for a variety of reasons.

Permissions:

- **PARAMEDICS** may transport, suction and replace tracheostomies
- **ADVANCED EMT’s** may transport and suction tracheostomies
- **EMT’s** may transport and suction tracheostomies

General Requirements:
- Identify reason patient has the tracheostomy and length of time patient has had it.
- Determine how frequently patient requires suction.
- Determine type and size of tracheostomy and document.
- Cuffed tracheotomies must be used with mechanical ventilation. Assure proper cuff fill by assessing pilot balloon. If patient does not have cuffed tracheostomy and requires ventilation, replace with a cuffed tracheostomy or insert an endotracheal tube in the stoma.
- Take a spare inner cannula or spare tracheostomy for transport where available.
- Some pediatric tracheostomies may not have an inner cannula and require strict attention to suction need.
- Suction devices and catheters must be immediately available.
- A BVM must be immediately available bedside to bedside.
- Many different configurations of tracheostomies and stoma covers exists. Understand how each device functions prior to transport.
- If unseen bleeding is occurring from within the stoma, hyper-inflate the cuff and transport immediately. Obvious external bleeding should be controlled by traditional means.

Key points:
- Uncuffed tracheotomies are used in patients who are spontaneously breathing.
UNSTABLE AT TIME OF TRANSFER

Purpose:
Define when a patient who is unstable at time of transfer is to be taken by EMS.

Overview:
Patients who are unstable at time of transfer may continue to deteriorate in transport. Every effort should be made to make the patient stable prior to transport. In only select situations should patients be knowingly transported in an unstable condition.

Permissions:

- **PARAMEDICS** may take patients who are unstable at time of transfer
- **ADVANCED EMT’s** may **NOT** take patients who are unstable at time of transfer
- **EMT’s** may **NOT** take patients who are unstable at time of transfer

General Requirements:

- Instability is defined as BP <80 with symptoms, Heart Rate <50 or greater than 130 with symptoms, EtCo2 <20, Reparatory rate < 8 or > 30 with uncorrected Spo2, Capnography, Blood gases or otherwise not perfusing.
- EMS should interface with the Physician if any instability exists and discuss further stabilization prior to departure.
- EMS should **NOT** begin transport until the patient has been made stable for the transport unless special transport circumstances exist.
- Special circumstances exist when a sending facility has limited capabilities and is unable to make the patient any more stable for transport. These could include, but are not limited to, the absence of specialty interventions, interventional specialists, blood or blood products.
UNSTABLE PATIENT DIVERSION

Purpose:
Define when a patient requires diversion to another facility from the originally defined destination.

Overview:
Patients who are stable at time of transfer may deteriorate in transport.

Permissions:
- PARAMEDICS may divert patients who are unstable
- ADVANCED EMT’s may divert patients who are unstable
- EMT’s may divert patients who are unstable

General Requirements:
- Patients shall not be diverted for crew / EMS convenience.
- EMS should attempt to divert to in system hospitals if reasonable for continuity of record access unless a specialty service is required.
- Patient must be symptomatic to the event and not responding to treatment / resuscitation efforts.
- Carefully weigh need for additional stabilization and interruption of transport with the treatment goals for the patient at the initial destination. Ex. It may be prudent to continue despite ongoing deterioration to the original destination if treatments for said condition are only available at the original destination.
USE OF LIGHTS AND SIRENS

Purpose:
Define when it is appropriate to use lights and sirens during intrahospital transports.

Overview:
The use of lights and sirens may be prudent in some patients who require time sensitive interventions at the receiving facility.

Permissions:
- PARAMEDICS may use lights and sirens
- ADVANCED EMT’s use lights and sirens
- EMT’s may use lights and sirens

General Requirements:
- The use of lights and sirens must not be a solution to having the proper level of care available for the transport. Ex. A BLS crew shall not attempt to take a patient “quickly” because that are present at the sending when ALS resources are truly needed.
- Life threatening changes to the patient can prompt a change in response mode.
- Any potential time benefit must be in favor of the patient.
- The patient must be going to the receiving for a known intervention not available at the sending, not an evaluation for intervention, or admission for evaluation.
- This document does not override established organizational emergency vehicle operation policies.
- Use of lights and sirens should be used in situations where the patient is being diverted due to instability, trauma transfers to the ED or OR, and for patient going for immediate lifesaving intervention. Ex. Stroke intervention, surgical intervention.
- Crew and patient must be restrained during transport.
- Sending Physicians may request the use of lights and sirens for critical patients and assume liability for such request that fit these criteria;
 - Stroke
 - STEMI
 - OB Complications
 - Trauma
 - Emergency Surgery
 - Neurosurgical Emergency
 - Vascular Emergency
 - Life or Limb Threatening Complications

Key points:
- The use of lights and sirens rarely saves appreciable time and creates a remarkable amount of risk.
- Priority one calls (Stroke, STEMI, Trauma) are a lights and siren response.
VENTILATOR MANAGEMENT – Assist /Control Only Device
> 16 years

Purpose:
Define use of simple transport ventilators in transport

Overview:
Most patients requiring artificial ventilation during transport use assist / control settings.

Permissions:
- PARAMEDICS may use AC ventilators on patients 16 years of age or older
- ADVANCED EMT’s may NOT use AC ventilators
- EMT’s may NOT use AC ventilators

General Requirements:
- Paramedics are only permitted to manage ventilators on patients 16 years or older.
- If at any time the ventilator or patient responds poorly, the ventilator must be stripped, and the patient bagged. Troubleshooting of ventilators shall not be undertaken while attached to a patient.
- Paramedics utilizing AC vents must have undergone testing consistent with a medical director approved competency and refreshed yearly.
- Paramedics utilizing AC vents must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- Slight changes may be made for patient comfort.
- Waveform capnography is required.
- The patient must be placed on the transport vent for a minimum of 5 mins prior to transfer to cot to assure they will acclimate properly.
- Take backup oxygen sources when away from the ambulance.
- Suction must be available.
- Spare ventilator tubing must be available if there are issues with the original tubing.
- Medical control must be contacted for authorization for major ventilator changes.
- Verify last sedation / analgesia and understand their duration of action. Treat per Sedation / Analgesia IFTP
- Set PEEP as designated by sending facility. If patient must be bagged for any reason, a PEEP valve must be used to assure continued PEEP.
- If patient becomes hypotensive, increase FiO2 and remove PEEP.
- A BVM must be immediately available bedside to bedside.
- Patients on extraordinarily high PEEP (>20 cmH2O) should be transported by Critical Care Resources if available. If it is necessary for ALS to transport assure the ventilator can support such pressures.
VENTILATOR MANAGEMENT - Multi Mode Device > 16 years

Purpose:
Define use of multi-mode ventilators in transport

Overview:
Most patients requiring artificial ventilation during transport use Assist / Control settings. Some patients may require special modes requiring advanced ventilation. Such as intubated CPAP, BiPAP, SIMV, or Patients requiring Pressure Support or Pressure Control.

Permissions:

<table>
<thead>
<tr>
<th>PARAMEDICS may use multi-mode ventilators with appropriate training on patents 16 years or older</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED EMT’s may NOT use multi-mode ventilators</td>
</tr>
<tr>
<td>EMT’s may NOT use multi-mode ventilators</td>
</tr>
</tbody>
</table>

General Requirements:

- Paramedics are only permitted to manage ventilators on patients 16 years or older.
- If at any time the ventilator or patient responds poorly, the ventilator must be stripped, and the patient bagged. Troubleshooting of ventilators shall not be undertaken while attached to a patient.
- Employees utilizing multi-mode vents must have undergone testing consistent with a medical director approved competency and at least refreshed yearly.
- Employees utilizing multi-mode vents must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- Employees utilizing multi-mode vents must have undergone a minimum of 6 documented hours of ventilation physiology training.
- Slight changes may be made for patient comfort.
- Waveform capnography is required.
- The patient must be placed on the transport vent for a minimum of 5 mins prior to transfer to cot to assure they will acclimate properly.
- Take backup oxygen sources when away from the ambulance.
- Suction must be available.
- Spare ventilator tubing must be available if there are issues with the original tubing.
- Medical control must be contacted for authorization for major ventilator changes.
- Verify last sedation / analgesia and understand their duration of action. Treat per Sedation / Analgesia IFTP
- Set PEEP as designated by sending facility. If patient must be bagged for any reason, a PEEP valve must be used to assure continued PEEP.
- If patient becomes hypotensive, increase FiO2 and remove PEEP.
- A BVM must be immediately available bedside to bedside.
- Patients on extraordinarily high PEEP (>20 cmH2O) should be transported by Critical Care Transport if available. If it is necessary for ALS to transport assure the ventilator can support such pressures.
- Patients on pressure ventilation should go by Critical Care Transport unless the paramedic is comfortable and has had additional in-depth training and understanding of this mode.
INDWELLING VENOUS LINES

Purpose:
Define use of indwelling venous lines in transport

Overview:
Indwelling venous lines of multiple configurations are frequently used in patient care.

Permissions:

| PARAMEDICS may use indwelling venous lines |
| ADVANCED EMT’s may NOT use indwelling venous lines |
| EMT’s may NOT use indwelling venous lines, but may transport patients with indwelling venous line to sub-acute destinations such as nursing homes, dialysis centers, scheduled appointments, etc. |

General Requirements:
- The Paramedic must establish type and location of indwelling access before beginning the transport.
- Blue capped ports are venous ports red capped port are arterial
- Flush lines prior to transport to assure patency.
- If access is required during transport, the port must be cleaned thoroughly with alcohol prior to attaching any device.
- The paramedic must assure that the lines are securely affixed to the patient during transport to withstand the rigors of transport.
- If a venous line comes out, apply direct pressure to the site and notify receiving facility. Save the catheter.
- If a venous line becomes partially dislodged, secure in place and notify the receiving facility.
- Indwelling venous catheters may be used in patients requiring medication administration enroute and may be accessed if no medications are being infused for interventions on patients whose condition changes during transport.
- Multi-lumen lines may have different internal diameters. Understand what lumens are available and their diameter.
- Reference markings on catheter ends for size and use.
- Venous dialysis catheters are to be utilized for crisis situations / resuscitation only.
Purpose:
Define the management of IV pumps in transport

Overview:
IV pumps are necessary during transport to assure that medication and fluid deliver is at a safe and therapeutic rate.

Permissions:

<table>
<thead>
<tr>
<th>Role</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMEDICS</td>
<td>may manage IV pumps</td>
</tr>
<tr>
<td>ADVANCED EMT’s</td>
<td>may NOT manage IV pumps</td>
</tr>
<tr>
<td>EMT’s</td>
<td>may NOT manage IV pumps</td>
</tr>
</tbody>
</table>

General Requirements:

- Paramedics utilizing IV pumps must have undergone testing consistent with a medical director approved competency and refreshed yearly.
- Employees utilizing IV pumps must have undergone hands on training with the device consistent with manufacturers manual and established competency.
- Paramedics may not titrate medications without established orders. Orders may be established with sending or receiving medical control on a per case basis.
- Blood and blood products may be taken on an IV pump if the Paramedic has undergone established training in such products.
- Medications may not be gravity dripped when on an IV pump at the sending facility. Normal saline, lactated ringers and dextrose preparations up to 10% concentration may be gravity dripped.
- If a patient becomes undesired effect as a result of an infusion, the infusion must be discontinued, patient resuscitated per PCP protocols, and medical control contacted.
- Manufacturers specific IV tubing must be used with like IV pumps.
- Keep pumps plugged in whenever possible to assure they continue to operate.
- Note all drips and document any discontinuations prior to departure.
- Verify all drip rates / doses with sending facility before departure.
- Each medication infusion line equals 1 intervention against the 3 devices per provider limit.
- Document patient weight for weight-based medications.
- Verify dose / rate against pharmacy labels.
Purpose:
Define the use of Paramedics and Advanced EMT’s as IV Technicians

Overview:
Other healthcare specialties may call upon EMS to assist in starting IVs where no providers are able or have the experience with such initiations.

Permissions:
- PARAMEDICS may function as an IV tech
- ADVANCED EMT’s may function as an IV tech
- EMT’s may NOT function as an IV tech

General Requirements:
- Standard sterile technique shall be used
- Technician must understand the need for the IV and treatment. Tailor catheter size and insertion location to the treatment modality.
- Establish if there are healthcare specialty restrictions on location or management of the IV.
- Verbal physicians’ orders are required for lower extremity, scalp, and external jugular insertions.
- Technicians may establish access only. It is up to the healthcare specialty to hang medications / fluids.
<table>
<thead>
<tr>
<th>MEDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRALAZINE (Apresoline)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PREGNANCY CLASS</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIONS</td>
<td>Reduces blood pressure by decreasing peripheral vascular resistance</td>
</tr>
<tr>
<td>INDICATIONS</td>
<td>1. Correction of hypertension associated with stroke after TPA treatment</td>
</tr>
<tr>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>CONTRAINDICATIONS</td>
<td>1. Known hypersensitivity to HYDRALIZINE (Apresoline)</td>
</tr>
<tr>
<td></td>
<td>2. Coronary artery disease</td>
</tr>
<tr>
<td></td>
<td>3. Mitral valve rheumatic heart disease</td>
</tr>
<tr>
<td>SIDE EFFECTS</td>
<td>1. Headache</td>
</tr>
<tr>
<td></td>
<td>2. Nausea / Vomiting</td>
</tr>
<tr>
<td></td>
<td>3. Tachycardia</td>
</tr>
<tr>
<td>SUPPLIED</td>
<td>20 mg / 1ml vial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADULT DOSAGE</th>
<th>For Intrafacility Transport Patient Receiving TPA who becomes Hypertensive:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only if BP is greater than 180 systolic or 105 diastolic then,</td>
</tr>
<tr>
<td></td>
<td>10 mg IV SLOW over 2 minutes first bolus</td>
</tr>
<tr>
<td></td>
<td>10 mg IV SLOW over 2 minutes 10 – 15 minutes after first dose and</td>
</tr>
<tr>
<td></td>
<td>only if BP is still greater than 180 systolic or 105 diastolic</td>
</tr>
<tr>
<td></td>
<td>Contact medical control if unchanged</td>
</tr>
</tbody>
</table>

| PEDIATRIC DOSAGE | Not Indicated in the pre-hospital setting |

<p>| KEY POINTS | • Check blood pressures in both arms, with at least one BP being a manual BP |
| | • Monitor cardiac and pulmonary status during administration |</p>
<table>
<thead>
<tr>
<th>MEDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABETALOL (Trandate)</td>
</tr>
</tbody>
</table>

PREGNANCY CLASS
C

ACTIONS
Reduces blood pressure by decreasing peripheral vascular resistance

INDICATIONS
1. Correction of hypertension associated with stroke after TPA treatment
2. Correction of blood pressure associated with OB emergencies

CONTRAINDICATIONS
1. Known hypersensitivity to LABETALOL (Trandate) or beta blockers
2. Bradycardia
3. Heart blocks
4. Shock
5. Sick sinus syndrome
6. Heart failure

PRECAUTIONS
1. Asthma / bronchospastic diseases
2. Impaired liver functions
3. Elderly
4. Thyroid disorders
5. Hypotension may occur
6. Conduction disturbances in cardiac conduction may occur

SIDE EFFECTS
1. Hypotension
2. Bradycardia
3. Dizziness
4. Fatigue
5. Arrhythmias

SUPPLIED
20 mg / 4 ml vial or Carpuject or 100 mg / 20ml - vial

ADULT DOSAGE
For Intrafacility Transport Patient Receiving TPA who becomes Hypertensive:
Only if BP is greater than 180 systolic or 105 diastolic then,
10 mg IV SLOW over 2 minutes first bolus
20 mg IV SLOW over 2 minutes 10 – 15 after first bolus and BP is still greater than 180 systolic or 105 diastolic
Contact medical control if unchanged

PEDIATRIC DOSAGE
Not Indicated in the pre-hospital setting

KEY POINTS
- Check blood pressures in both arms, with at least one BP being a manual BP
- Monitor cardiac and pulmonary status during administration